
3
Basics of Distribution Theory

To introduce some basics concepts of Distribution theory we first define

the convolution product between two functions and then approximations of the

identity. Then we define distributions and see how they generalize functions.

The last section is dedicated to operations on distributions: the derivative of

a distribution and the convolution product of a distribution and function. For

further references and proofs see (Lebeau 1999) and see (Schwartz 1997) for

more information on the invention of distributions.

3.1
Function approximations

Figure 3.1: Convolution of a discontinuous function f with a smooth test
function g.

3.1.1
Convolution

Let L1(Rd) denote the normed vector space of integrable functions on

Rd, where Rd is equipped with its Lebesgue measure dx. Let f and g be two

function of L1(Rd).

Definition 3.1. (Basic convolution) For f, g ∈ L1(Rd), we call convolution

product of f and g, denoted by f ∗ g, the element of L1(Rd) defined for almost
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every z by: (
f ∗ g

)
(x) =

∫
f(z)g(x − z)dz.

Figure 3.1 illustrates the regularization effect of the convolution.

Lemma 3.2. Let f ∈ L1(Rd), g ∈ Ck(Rd). If g admits limited partial

derivatives ∂αg for all multi-indexes α, |α| ≤ k, then f ∗ g ∈ Ck(Rd) and

for |α| ≤ k we have:

∂α(f ∗ g) = f ∗ ∂αg.

3.1.2
Regularization

Let φ be a C∞ real-valued function with support in the ball {∥t∥ ≤ 1}
whose integral is equal to 1: ∫

Rd

φ(t)dt = 1.

Definition 3.3. (Approximation of the identity) We call approximation of the

identity the family of functions(
φϵ : t 7−→ ϵ−dφ(t/ϵ) , 0 < ϵ ≤ 1

)
.

Note that the φϵs are C∞ functions with support in the ball {∥t∥ ≤ ϵ}
and of integral equals to 1, since∫

Rd

ϵ−dφ(t/ϵ)dt =

∫
Rd

φ(t)dt = 1.

Lemma 3.4. Let f be a continuous function with compact support on Rd. The

functions fϵ = f ∗ φϵ belong to C∞(Rd), have a compact support and converge

uniformly on Rd to f when ϵ tends to 0.

Theorem 3.5. For all f ∈ L1(Rd), the functions fϵ = f ∗φϵ belong to L1∩C∞,

and converge in the L1 norm to f when ϵ tends to 0.

(f ∗ φϵ) −−→
ϵ→0

f in L1.

In particular, the space of C∞(Rd) functions with compact support is dense in

L1(Rd).
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Figure 3.2: A distribution associates a point to a test function.

3.2
Distributions

For K compact of Rd, we denote by C∞
K the space of C∞ functions of Rn

with support included in K. Let Ω be an open of Rd. C∞
0 (Ω) is the union of

C∞
K ’s where K is a compact in Ω. The elements of C∞

0 (Ω), i.e. infinitely often

differentiable functions with compact support in Ω, are called test functions.

Definition 3.6. (Distributions) A distribution on Ω is a linear form T of

C∞
0 (Ω)

φ 7−→ ⟨T, φ⟩ ∈ R φ ∈ C∞
0 (Ω).

which satisfies the following property: for all compact K in Ω, there exists an

integer p and a constant C such that

∀φ ∈ C∞
K |⟨T, φ⟩| ≤ C sup

|α|≤p
x∈K

|∂αφ(t)|. (3-1)

We denote by D′(Ω) the space of distributions on Ω (see Figure 3.2). It is a

vector space. When the integer p can be chosen independently from K, we say

that the order of the distribution T is finite, and the smallest possible value of

p is called the order of T .

Distribution are “generalized functions”. Let L1
loc(Ω) be the space of

functions locally integrable on Ω. An element of L1
loc(Ω) is the data of a

Lebesgue-measurable function f on Ω, satisfying
∫

K
|f(x)|dx < ∞ for all

compact K ∈ Ω: two such functions are identified if and only if f(x) = g(x)

almost everywhere. We write Tf , the distribution associated to an element f ∈
L1

loc(Ω) i.e.

⟨Tf , φ⟩ =

∫
Ω

f(x)φ(x)dx ∀φ ∈ C∞
K .

From definition 3.6, we have | ⟨Tf , φ⟩ | ≤ C supx∈K |φ(x)| with C =∫
K

|f(x)|dx, so the regularity condition (3-1) is satisfied for p = 0. The next
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lemma identifies L1
loc(Ω) with a subspace of D′(Ω).

Lemma 3.7. Let f and g be two functions locally integrable on Ω. The

following properties are equivalent:

– f(x) = g(x) almost everywhere.

–

∫
f(x)φ(x)dx =

∫
g(x)φ(x)dx for all φ ∈ C∞

0 (Ω), i.e. Tf = Tg.

Example 3.8. Dirac’s distribution at a ∈ Rd, δa is defined by

⟨δa, φ⟩ = φ(a).

It is a distribution of order 0 on Rd. If χϵ(x) = ϵ−1χ(x/ϵ) is an approximation

of the identity, the χϵ’s converge point-wise in D′(Rd) to δ0 since

⟨χϵ, φ⟩ =

∫
φ(x)χϵ(x)dx =

(
φ ∗ χ̌ϵ

)
(0).

where χ̌ϵ(x) = χϵ(−x) = ϵ−1χ(−x/ϵ) is also an approximation of the identity,

hence by the lemma 3.4:

lim
ϵ→0

⟨χϵ, φ⟩ = φ(0) = ⟨δ0, φ⟩ .

Example 3.9. Another example of distribution, but of order > 0, is da defined

for a ∈ R by

⟨da, φ⟩ = φ′(a).

3.3
Operations on distributions

Definition 3.10. (Derivation) The partial derivatives
∂T

∂xi

of a distribution

T ∈ D′(Ω) are the distributions on Ω defined by:⟨
∂T

∂xi

, φ

⟩
=

⟨
T,− ∂φ

∂xi

⟩
∀φ ∈ C∞

0 (Ω).

Hence for T ∈ D′(Ω), φ ∈ C∞
0 (Ω)⟨

∂

∂xi

(
∂T

∂xj

)
, φ

⟩
=

⟨
∂T

∂xj

,
∂φ

∂xi

⟩
=

⟨
T,

∂2φ

∂xi∂xj

⟩
.

By Schwartz’s lemma:
∂

∂xi

(
∂T

∂xj

)
=

∂

∂xj

(
∂T

∂xi

)
. Therefore the order of

derivation does not affect the result of a successive derivation of a distribution,
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and for α ∈ Nn multi-index, we have:

⟨∂αT, φ⟩ = (−1)|α| ⟨T, ∂αφ⟩ .

Besides, if T = f(x) is a C1 function, Definition 3.10 means that for all φ ∈ C∞
0

we have:⟨
∂T

∂xj

, φ

⟩
=

⟨
T,

∂φ

∂xj

⟩
= −

∫
f(x)

∂φ

∂xj

(x)dx =

∫
∂f

∂xj

(x)φ(x)dx.

Hence the distributional derivative,
∂Tf

∂xj

of Tf is the distribution associated to

the usual derivative
∂f

∂xj

(x) for f of class C1:
∂Tf

∂xj
= T ·∂f

∂xj
.

Example 3.11. Let H(t) be Heaviside’s function defined for t ∈ R by{
H(t) = 1 for t ≥ 1

H(t) = 0 for t < 0

H ∈ L1
loc(R) and is thus associated to a distribution. Computing its distribu-

tional derivative we obtain:

⟨T ′
H , φ⟩ = −⟨TH , φ′⟩ = −

∫ ∞

0

φ′(t)dt = φ(0) = ⟨δ0, φ⟩ .

Hence:

T ′
H = δ0.

Example 3.12. Let δa(t) be Dirac’s distribution defined for t ∈ R. We can

check that δ′a = −da:

⟨δ′a, φ⟩ = −⟨δa, φ
′⟩ = −φ′(a).

Theorem and Definition 3.13. (Substitution formula) Let Ω1 and Ω2 be two

open subsets of Rd and ϕ : Ω1 → Ω2 a C∞ diffeomorphism. For T ∈ D′(Ω2),

the formula:

∀φ ∈ C∞
0 (Ω1), ⟨T ◦ ϕ, φ⟩ = ⟨T, ψ⟩ with ψ(y) =

φ
(
ϕ−1(y)

)
| det J

(
ϕ−1(y)

)
|
.

defines a distribution on Ω1, called inverse image of T by the change of

parameter ϕ.

The above definitions match the usual formula for distributions associ-

ated to a function in L1.
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Now, we aim at calculating the convolution product of distributions, we

first define the convolution product of a distribution and a test function. Let

T ∈ D′(Rd) and φ ∈ C∞
0 (Rd). We define a function of x by setting:(

T ∗ φ
)
(x) = ⟨T, τxφ̌⟩ . (3-2)

where τxφ̌ ∈ C∞
0 (Rd) is the function z 7→ φ̌(z − x) = φ(x − z). For

T = f(x) ∈ L1
loc, the formula above is equivalent to the usual definition(

f ∗ φ
)
(x) =

∫
f(z)φ(x − z)dz. Observe that T ∗ φ is always a C∞ function.

Proposition 3.14. We denote by T ∗ φ the convolution product of T and φ.

It is a C∞ function on Rd satisfying for all α:

∂α(T ∗ φ) = T ∗ ∂αφ.

Note that approximations of the identity also regularize distributions:

Proposition 3.15. If φϵ is an approximation of the identity, then we have the

convergence in D′: T ∗ φϵ −−→
ϵ→0

T , i.e.:

∀ϕ ∈ C∞
0 (Ω1), ⟨T ∗ φϵ, ϕ⟩ = ⟨T, ϕ ∗ φ̌ϵ⟩ −−→

ϵ→0
⟨T, ϕ⟩ in R.
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